(AUTONOMOUS)

M.Tech I Year I Semester (R20) MODELING AND ANALYSIS OF ELECTRICAL MACHINES (20EE2102)

UNIT –I

1	Derive the expressions for electromagnetic force in the case of a singly excited system.	[10M]
2	Derive the electromagnetic torque equation for Singly Excited Rotating Actuator.	[10M]
	Explain the function of magnetic coupling field in an electromechanical energy	
3	conversion device.	[10M]
	Derive the expressions for stored magnetic energy and electromagnetic torque in the	
4	case of a doubly excited system.	[10M]
5	Calculate the induced emf in the excitation coil for a linear actuator and sketch $L(x)$.	[10M]
6.	Derive the electromagnetic torque equation for Doubly Excited Rotating Actuator.	[10M]
7	Derive the state equations for Doubly Excited Rotating Actuator	[10M]
8	Derive the energy balance equation in an electromechanical energy conversion device	[10M]
9	Derive the electromagnetic torque equation for Singly Excited Rotating Actuator.	[10M]
10	Explain the function of magnetic coupling field in an electromechanical energy	
	conversion device.	[10M]

UNIT –II

	1. Derive the expressions for stored magnetic energy and electromagnetic torque in	
	the case of a doubly excited system.	[10M]
2	Derive the expressions for mechanical work done in the case of a singly excited system	[10M]
3	Calculate the reluctance force acting on the plunger of a linear actuator.	[10M]
4	Explain the mmf space wave for concentrated coil in the rotating machines.	[10M]
	For a 2 pole 3 phase wye connected salient pole machine derive the expressions for	
5	per phase winding inductances.	[10M]
	For a 2-pole, 3-phase Y-connected symmetrical synchronous machine, derive torque	
6.	equations in machine variables	[10M]
	Derive an expression for the air-gap MMF in a 2-pole, 3-phase, Y-connected salient	
7	pole synchronous machine	[10M]
8	Derive the torque equations in machine variables for a synchronous machine.	[10M]
	For a 2-pole, 3-phase Y-connected symmetrical synchronous machine, derive torque	
9	equations in machine variables	[10M]
10	Device on any starting the size of NOVE in a 2 rate of V and starting	
	Derive an expression for the air-gap MMF in a 2-pole, 3-phase, Y-connected salient pole synchronous machine.	[10 M]
	salent pole synchronous machine.	[10M]

UNIT –III

1	Explain the transformation from three phase to two phase and vice versa in detail?	[10M]
2	Explain the transformation from rotating axes to stationary axes and vice versa in detail?	[10M]
3	Explain the physical concept of Park's transformation?	[10M]
4	Explain the mathematical model of Induction machine?	[10M]
5	Explain the steady state analysis of Induction machine?	[10M]
6	Discuss about the dynamic simulation of induction machine	[10M]
7	Explain the d-q model of induction machine in Stator reference Frame?	[10M]
8	Explain the d-q model of induction machine in Rotor reference Frame?	[10M]
9	Explain the d-q model of induction machine in Synchronously Rotating reference Frame?	[10M]
1(Explain the signal flow graph of the induction machine per unit model? [10M]	[10M]

UNIT –IV

1	Write the Comparison between single phase and poly -phase induction motor?	[10M]
2	Explain the Cross field theory of single-phase induction machine?	[10M]
3	Explain the steady state analysis of single-phase induction machine using Cross field theory	[10M]
4	Explain the steady state torque of single-phase induction machine?	[10M]
	Explain the steady state torque and steady state analysis of single-phase induction machine	
5	using Cross field theory?	[10M]
6	Explain the phase Co-ordinate model of synchronous Machine?	[10M]
	For a 2-phase unsymmetrical induction machine, derive the voltage equation in	
7	machine variables	[10M]
8	Explain the Steady state operation of synchronous Machine?	[10M]
9	Explain the dynamic modeling of two phase asymmetrical induction machine	[10M]
10	Write the importance of synchronous machine inductances?	[10M]

UNIT –V

1	Explain the Operating principle of Switched Reluctance Motor?	[10M]
2	Explain the Construction and functional Aspects of Switched Reluctance Motor?	[10M]
3	Derive the Average torque and Energy Conversion Ratio of Switched Reluctance Motor?	[10M]
4	Write the Mathematical model of Switched Reluctance Motor?	[10M]
5	Explain the Operating principle of Permanent Magnet Brushless DC Motor?	[10M]
6	Write the Mathematical model of Permanent Magnet Brushless DC Motor?	[10M]
7	Explain the Permanent Magnet Brushless DC Motor Drive Scheme?	[10M]
	Explain the Operating principle and Mathematical model of Permanent Magnet Brushless	
8	DC Motor?	[10M]
9	Explain the commutation windings and SRM modeling with suitable circuit diagrams?	[10M]
10	Explain the importance of flux current position curve fitting?	[10M]